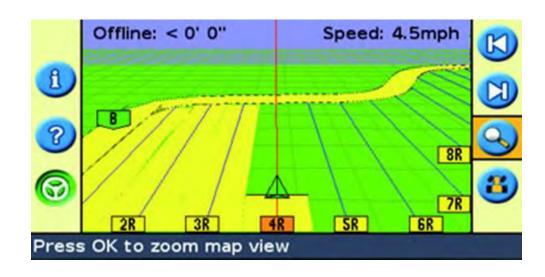
Morgan County Cattlemen's Meeting March 6, 2023

Precision Ag Options for Hay and Livestock Producers

Simer Virk


Extension Precision Ag Specialist University of Georgia

GPS Guidance Systems

Straight Guidance Paths

Curved Guidance Paths (almost any sort of guidance today)

Benefits of GPS Guidance:

- ➤ Savings on inputs (avoid skips/overlap; 3 10 %)
- ➤ Faster operating speed (0.5 2.0 mph)
- Less fatigue (adding 2 to 4 extra hours per day)
- Nighttime operation more feasible (as accurate as day time)

GPS Guidance Systems - Types

Lightbar (Entry-Level) Guidance

Auto-Steer Guidance

Lightbar Guidance Systems - Cost

Trimble - EZ250/500

Used Options \$1,000 - \$1,500

Outback SLite

Topcon – GX-45

Lightbar Guidance Systems - Cost

TeeJet – Matrix 430

Trimble – GFX 350

\$1,500 - \$2,000

\$3,000 - \$3,500

Lightbar Guidance Systems - Cost

Raven – CR7

AgLeader – InCommand 800/2050

\$3,200 - \$4,000

\$3,500 - \$4,000

Assisted-Steering Systems - Cost

Trimble – EZ-Steer

Raven – Smartrax MD

Auto-Steer Systems - Cost

John Deere

Cost Vs Benefits of GPS Guidance

Let's take an example of \$2,500 guidance system, which may seem expensive but lets do the math:

Size of Farm: 100 acres

Life: 8 – 10 years

Average savings: 3% - 10%

Savings from using guidance: $$10 \times 100 = 1000 (assuming \$10/ac)

Time it will take to pay back for this guidance system = 2.5 years

Return on Investment

Following University of Georgia Cooperative Extension recommendations, we assumed that fertilizer was applied at a rate of 300 lb N, 60 lb P_2O_5 , and 250 lb K_2O per acre for hayfields; and 200 lb N, 30 lb P_2O_5 , and 120 lb K_2O per acre for pastures. Nitrogen was applied as urea-ammonium nitrate (32% N), phosphorus was applied as monoammonium phosphate (52% P_2O_5), and potassium was applied as muriate of potash (60% K_2O). Calculations included one ton of dolomitic limestone, regardless of management. All fertilizer and lime prices were based on DTN reports from January 2021.

Since UGA offers a variety of herbicide recommendations, we followed a typical protocol based on producer calls from the past year. For the hayfield scenarios, we assumed indaziflam was applied at 6 oz per acre per year, nicosulfuron + metsulfuron at 1.5 oz per acre per year, and aminopyralid + 2,4-D at 20 oz per acre per year. For the pasture scenarios, we assumed aminopyralid + 2,4-D was applied at 20 oz per acre per year. All herbicide prices were based on average quotes from farm supply stores in southwest Georgia.

Most livestock producers overseed their bermudagrass pastures with a winter annual forage to extend the grazing season. For our calculations, we assumed rye was planted at 90 lb of pure live seed per acre and fertilized with 100 lb N (urea-ammonium nitrate) per acre.

Source: UGA Extension Publication B1546 – GPS Guidance Options for Forage Systems

Return on Investment

Table 2. Estimated costs of common inputs when overapplied to hybrid bermudagrass forage.

	Total cost per acre				
Percent overlapped	Hayfield ¹	Pasture ²			
10%	\$376.65	\$260.47			
5%	\$359.53	\$248.63			
1%	\$345.83	\$239.16			
Average standard application cost	\$342.41	\$236.79			

Note. Please refer to the text under "return on investment" for the full list of assumptions.

¹ Hayfield costs assume anticipated fertilizer and herbicide expenses.

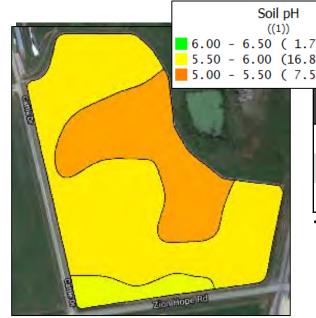
² Pasture costs assume anticipated fertilizer, herbicide, and winter annual forage expenses.

Return on Investment

Table 3. Estimated additional costs or savings of common inputs over- or underapplied to hybrid bermudagrass forage.

	Added cost or savings					
Percentage overlapped or skipped	Havtiein					
Difference for 1 acre						
1%	\$3.42	\$2.37				
5%	\$17.12	\$11.84				
10%	\$34.24	\$23.68				
Difference for 100 acres						
1%	\$342.41	\$236.79				
5%	\$1,712.05	\$1,183.97				
10%	\$3,424.10	\$2,367.93				
Difference for 250 acres						
1%	\$856.02	\$591.98				
5%	\$4,280.12	\$2,959.91				
10%	\$8,560.24	\$5,919.83				

Precision Soil Sampling and VR Fertilization


Traditional Soil Sampling (1-2 composite sample)

Grid Soil Sampling (uniform sized grids)

Zone Soil Sampling (zones based on certain soil/crop properties)

		Uni	form Applica	ation
Field	Size	Rate	Total Lime	Total Cost
	(acres)	(lbs/ac)	(lbs)	(\$)
Zone 1	26.0	2000	52,000	\$494
Total			26 ton	\$494

8	7 ac) 3 ac)	ac) variable-Rate Application									
5	ield	Size	Rate	Total Lime	Total Cost						
		(acres)	(lbs/ac)	(lbs)	(\$)						
	Zone 1	7.5	1500	11,250	\$107						
	Zone 2	16.8	1000	16,800	\$160						
	Zone 3	1.7	0	0	\$0						
	Total			14 ton	\$267						

\$23/acre

Potassium

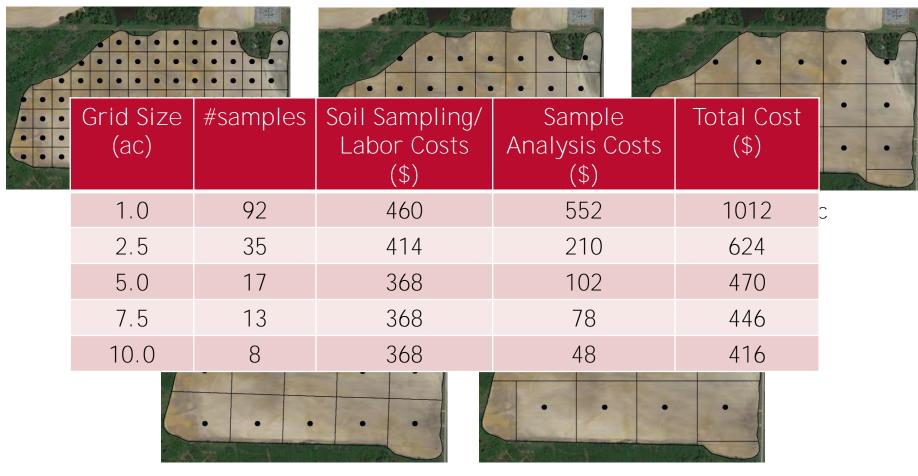
Phosphorus

Total: N-P-K: 75 - 0 - 110 lbs/ac

Pre-plant: N-P-K: 30 - 0 - 110 lbs/ac

		Uniform	Application
Field	Size	Cost	Total Cost
	(acres)	(\$/ac)	(\$)
Field	26.0	124	3,224
Total			\$3 224

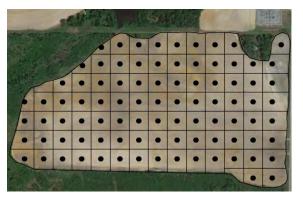
30 - 0 - 110 lbs/ac


	Soil K (ppm) Above 275.00 (0.0 ac) 170.00 - 275.00 (0.3 ac) 70.00 - 170.00 (17.0 ac) Below 70.00 (8.9 ac)
Control Contro	Mope Rd

30 - 0 - 70 lbs/ac 0 - 0 - 40 lbs/ac

			ble-Rate ication
Field	Size	Cost	Total Cost
	(acres)	(\$/ac)	(\$)
Field	26.0	89	2,314
Zone 2	9.0	28	252
Total			\$2,566

\$658 - \$25/acre

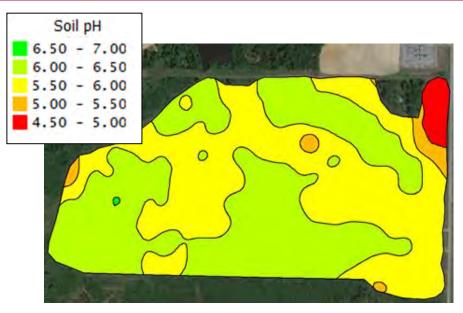

Optimal Grid Size for Soil Sampling?



7.5 ac 10.0 ac

Optimal Grid Size for Soil Sampling?

(2022 - Tift, Worth, Colquitt, Terrell, Jefferson)

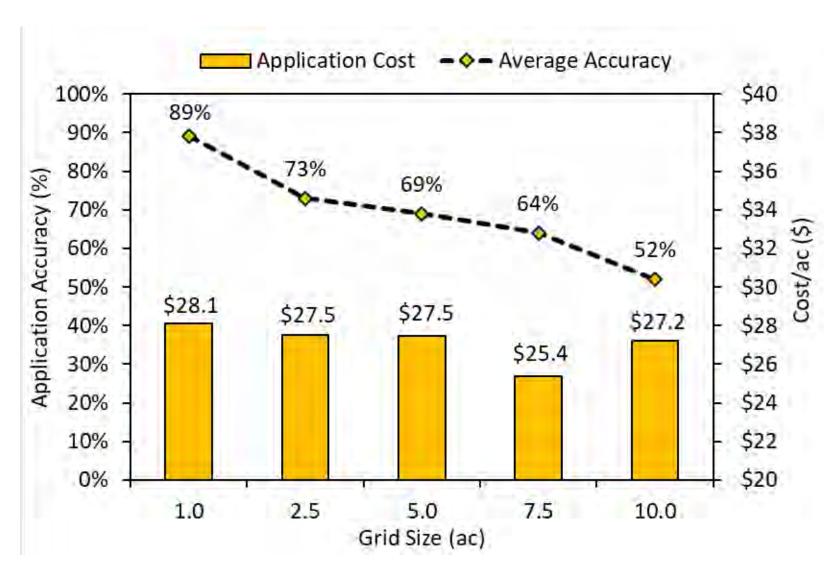


1.0 ac 2.5 ac 5.0 ac

7.5 ac 10.0 ac

Actual Soil pH Variability (163 Samples)

2.5 ac (35 samples)



1 ac (92 samples)

5 ac (17 samples)

Lime

Broadcast Spinner-Spreader Calibration:

Standard Pan Testing

- Rate of Application
- Spread Uniformity
- Effective Swath Width

Standard Pan Test Set-Up:

- Collection pans with a gridded baffle placed in the bottom of the pan
- A 100 200 foot measuring tape or a rope marked at equal intervals (2.5 5.0 ft.)
- Flags for marking pan locations along the swath
- A test tube rack with test tubes (numbered same as pans) and a funnel to collect material from the pans into the tubes
- Optional A weighing scale with a measurement accuracy of 0.1 grams or higher accuracy

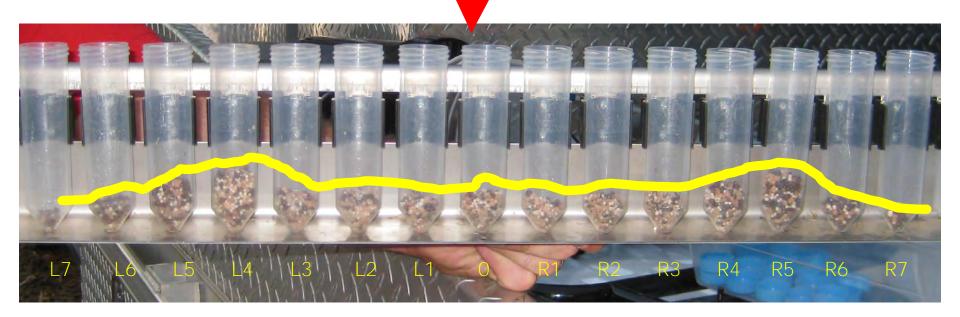
- Place collection pans at 5.0 feet intervals along the swath on each side of spreader centerline
- Collect the material in each pan after spreader makes a pass spreading the fertilizer
- Evaluate the spreader performance by analyzing material collected in each pan

Calculate Applied Rate

Pan Area = 10.5 in. x 14.5 in. = 1.06 square ft

Weight of material = 1.45 grams

Applied Rate = 132 lb/ac


1 pound = 453.6 grams

1 foot = 12 inches

1 acre = 43560 square foot

Analyze Spread Pattern

Using data sheets to analyze spread pattern

Data Recording

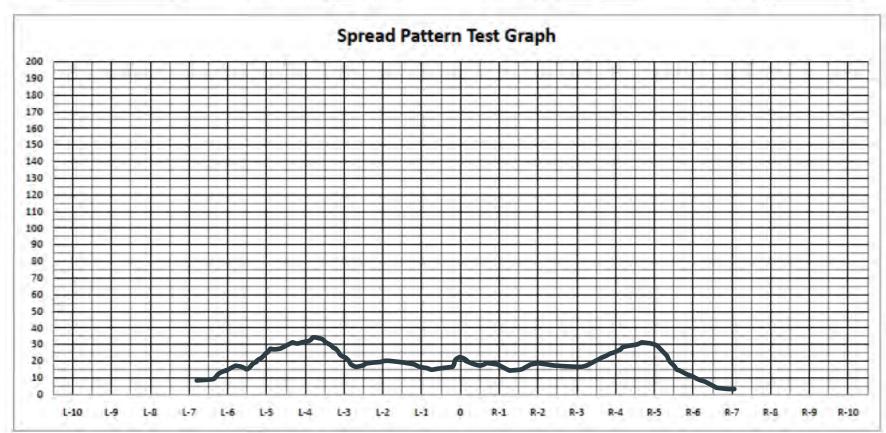
Run No. _______
No. of Passes ______
Ib./Acre _____
Test Site

Model ______
Serial No. _____
Chain Type _____
Material _____
Material Density _____ lb./cu.ft.

Flow Divder Setting _____ rpm

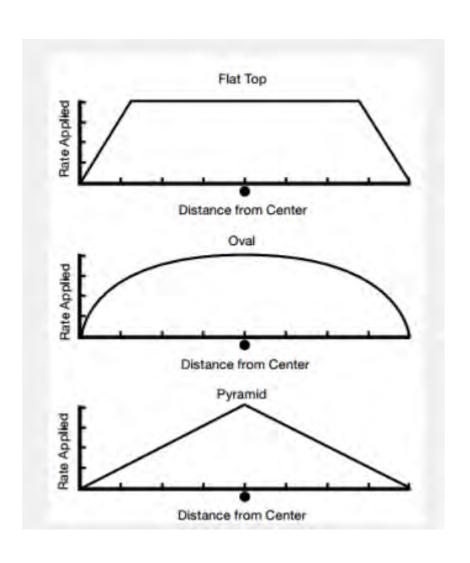
Spinner Speed _____ rpm

Spinner Valve Setting ____
Blade Settings L R


Spread Width ft.

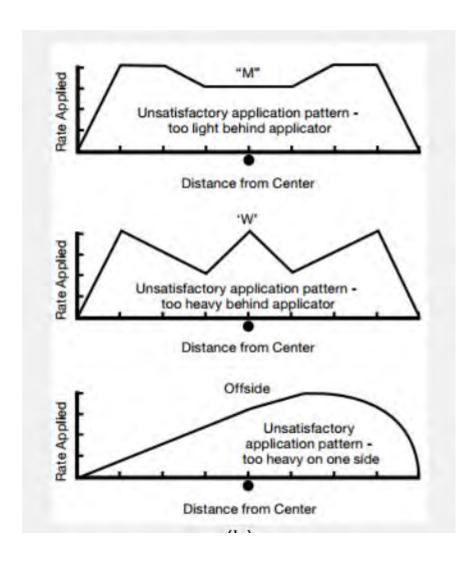
Height To Spinners in.

Wind mph


Driving Method

Pan Spacing ft.

Typical Spread Patterns


Acceptable patterns that provide uniform spread

TYPICAL SPREAD PATTERNS

Unacceptable patterns that requires spreader adjustment

Recommendation

 Move flow divider inwards to change material delivery point

 Move flow divider outwards and check feed gate height

 Check for speed differences between spinner discs and uneven material flow

Sprayer Calibration

Flow Rate per nozzle

Target App. Rate Ground Speed Nozzle Spacing

Flow Rate
$$(GPM) = \frac{Application Rate (GPA) \times Speed (mph) \times Spacing (in.)}{5940}$$

Conversion Factor

1 acre =
$$43560 \text{ feet}^2$$

$$5940 = \frac{43560 \times 60 \times 12}{5280}$$

Sprayer Calibration

Lets take an example:

- Application Rate = 15 GPA
- Ground Speed = 10 mph
- Nozzle Spacing = 20 inches

Flow Rate
$$(GPM) = \frac{Application Rate (GPA) \times Speed (mph) \times Spacing (in.)}{5940}$$

Flow Rate (GPM) =
$$\frac{15 \times 10 \times 20}{5940}$$

Answer = 0.505 GPM

Bro		110°XR/XRC	П	TTJ60	J60 AIXR AI3070 AITTJ60 110°AI/AIC TTI60 TTI														
	0		X	景	M						GPM					GF		<u> </u>	
	PSI	15-60 PSI	15-90 PSI	20-90 PSI	15-90 PSI	20-90 PSI	20-90 PSI	30-115 PSI	20-90 PSI	15-100 PSI		4 mph	5 mph	6 mph	7 mph	8 mph	9 mph	10 mph	12 mph
	20	M	VC	VC	XC	UC	UC	_	UC	UC	0.28	21	16.6	13.9	11.9	10.4	9.2	8.3	6.9
04	30	M	C	C	XC	XC	XC	UC	UC	UC	0.35	26	21	17.3	14.9	13.0	11.6	10.4	8.7
AI AIC AITTJ60	40	M	C	C	VC	VC	VC	XC	UC	UC	0.40	30	24	19.8	17.0	14.9	13.2	11.9	9.9
AIXR AI3070 TT	50	F	M	M	VC	VC	VC	VC	UC	UC	0.45	33	27	22	19.1	16.7	14.9	13.4	11.1
TTI TTI60 TTJ60	60	F	M	M	VC	VC	C	VC	XC	UC	0.49	36	29	24	21	18.2	16.2	14.6	12.1
XR XRC	70	-	M	M	C	C	C	VC	XC	XC	0.53	39	31	26	22	19.7	17.5	15.7	13.1
(50)	80	-	M	M	C	C	M	VC	VC	XC	0.57	42	34	28	24	21	18.8	16.9	14.1
	90	_	F	M	C	C	M	VC	VC	VC	0.60	45	36	30	25	22	19.8	17.8	14.9
	20	M	VC	VC	XC	UC	UC	_	UC	UC	0.35	26	21	17.3	14.9	13.0	11.6	10.4	8.7
05	30	M	C	C	XC	XC	XC	UC	UC	UC	0.43	32	26	21	18.2	16.0	14.2	12.8	10.6
AI AIC AITTJ60	40	M	M	C	VC	VC	VC	XC	UC	UC	0.50	37	30	25	21	18.6	16.5	14.9	12.4
AIXR AI3070	50	F	М	C	VC	VC	VC	XC	UC	UC	0.50	42	33	28	24	21	18.5	16.6	13.9
TT TTI TTI60	60	F	M	M	VC	C	VC	VC	XC	XC	0.61	45	36	30	26	23	20	18.1	15.1
TTJ60 XR XRC	70	-	M	M	C	C	C	VC	XC	XC	0.66	49	39	33	28	25	22	19.6	16.3
(50)	80	_	F	M	C	C	С	VC	VC	VC	0.71	53	42	35	30	26	23	21	17.6
	90	_	F	M	C	C	M	VC	VC	VC	0.75	56	45	37	32	28	25	22	18.6
	20	М	VC	VC	XC	_	UC	-	UC	UC	0.42	31	25	21	17.8	15.6	13.9	12.5	10.4
06	30	М	С	C	XC	_	XC	UC	UC	UC	0.52	39	31	26	22	19.3	17.2	15.4	12.9
AI AIC	40	M	M	C	VC	-	VC	XC	UC	UC	0.60	45	36	30	25	22	19.8	17.8	14.9
AITTJ60 AIXR	50	M	M	C	VC		VC	XC	UC	XC	0.67	50	40	33	28	25	22	19.9	16.6
TT TTI TTI60	60	F	M	M	VC	-	0	XC	XC	XC	0.73	54	43	36	31	27	24	22	18.1
TTJ60 XR XRC	70		M F	M	VC		0	VC	XC	VC	0.79	59	47	39	34	29	26	23	19.6
(50)	80 90	_	F =	M M	C		M	VC VC	XC	VC	0.85	63 67	50	42 45	36 38	32	28 30	25 27	21
	90			IVI	_		IVI	VC	VC.		0.90	07	22	43	30	22	30	21	22

Sprayer Calibration

Broadcast Application

Nozzle output = 0.51 GPM

1 Gallon = 128 oz.

1 Minute = 60 sec.

Nozzle output = $(0.51 \times 128)/60 = 1.1 \text{ oz/sec}$

Time	Volume to Catch
(s)	(oz.)
10	11.0
15	16.5
20	22.0

Ounce (1/128th acre) method

1 Gallon = 128 oz.
1 acre = 43560 ft²
$$1/128$$
 acre = 340 ft²

Distance to travel =
$$\frac{4080}{Nozzle Spacing (inches)}$$

Nozzle Spacing	Distance
(in)	(ft)
12	340
14	292
16	255
18	227
20	204
24	170

Record the time (seconds) to travel the selected distance & then collect the spray output for the same time from each nozzle

Volume collected (oz.) = Application Rate (GPA)

Ounce (1/128th acre) method

1 Gallon = 128 oz.
1 acre = 43560 ft²

$$1/128$$
 acre = 340 ft²

Distance to travel =
$$\frac{4080}{Nozzle Spacing (inches)}$$

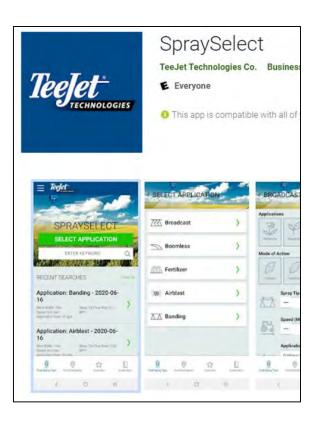
Nozzle Spacing	Distance
(in)	(ft)
12	340
14	292
16	255
18	227
20	204
24	170

Record the time (seconds) to travel the selected distance & then collect the spray output for the same time from each nozzle

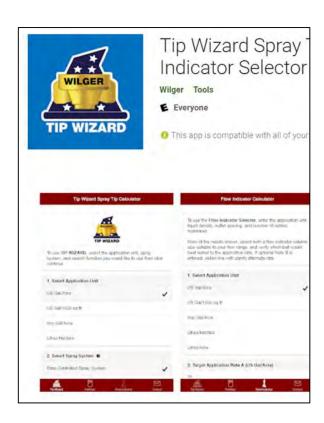
Volume collected (oz.) = Application Rate (GPA)

Volume collected = 15 oz.

Spot-On Spray Calibrator


- Best for flow rates below 1 GPM
- Press START button and hold the meter under nozzle at slight angle
- Allow the meter to fill until the display shows a flow rate

(The sprayer calibrator has two metal electrodes that senses the water level and calculates GPM based on time it takes to fill a known volume)


 Display holds reading for 90 seconds. Empty the meter and perform calibration on next nozzle

Useful Nozzle Selection and Sprayer Calibration Apps

TeeJet Spray Select

GreenLeaf Nozzle Calculator

Wilger Tip Wizard

Thanks!

Simer Virk

Extension Precision Ag Specialist

University of Georgia

Email: svirk@uga.edu

Twitter: @PrecAgEngineer

https://agtechdata.uga.edu/