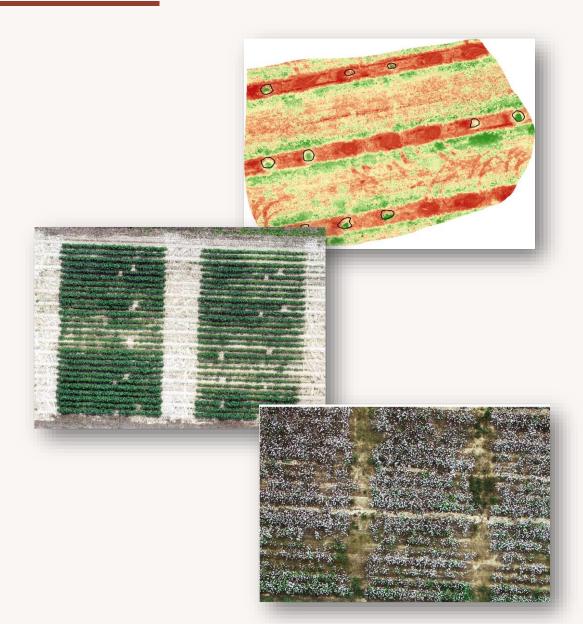


Using UAS Multispectral Imagery to Estimate Yield Contributing Physiological Parameters of Cotton

Amrit Pokhrel


MS Student Department of Crop and Soil Sciences University of Georgia

Introduction

Unoccupied Aerial Systems (UAS) application in agriculture:

- Mapping field variability
- Crop species classification
- Growth monitoring
- Stress detection
- Crop phenotyping
- Yield prediction

Importance of Cotton

 Cotton has global importance as a commercial crop and substantial contribution to clothing and textile industry.

Among top 3 cotton-producing countries
 Contribute 35% of global cotton export (USDA 2021)

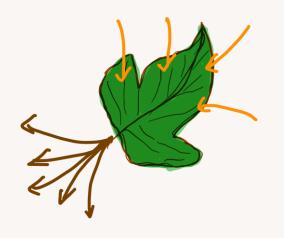
Yield Function

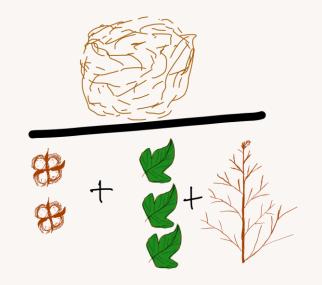
Yield = IPAR x RUE x HI

IPAR

 Intercepted Photosynthetically Active Radiation

RUE


 Radiation Use Efficiency


■ g MJ⁻¹

HI

Harvest
 Index

Hypothesis

 Vegetation indices from UAS-based multispectral imagery can be utilized to predict in-season physiological parameters in cotton.

Objectives

- To assess the relationship between vegetation indices derived from UAS multispectral imagery and cotton physiological parameters (IPAR and RUE)
- To develop models using vegetation indices that can be used to predict IPAR and RUE in cotton

Experimental Layout

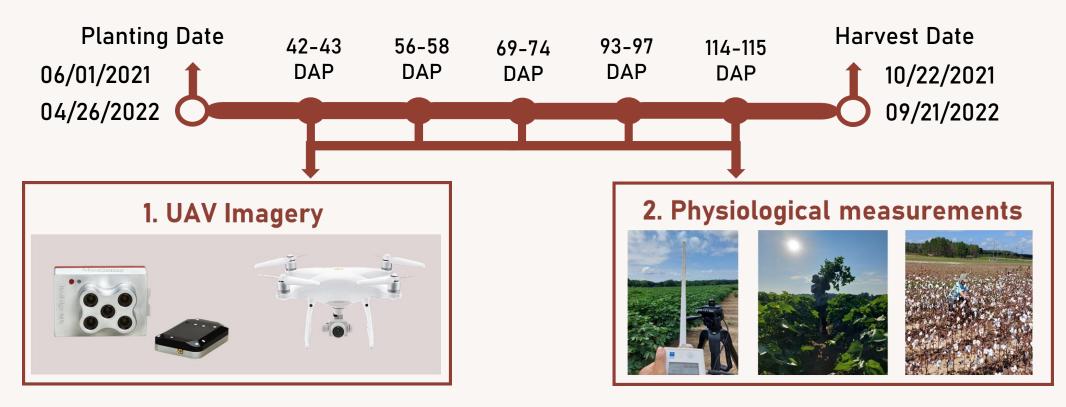
Study Year:

2021, 2022

Cultivar:

DP 1646

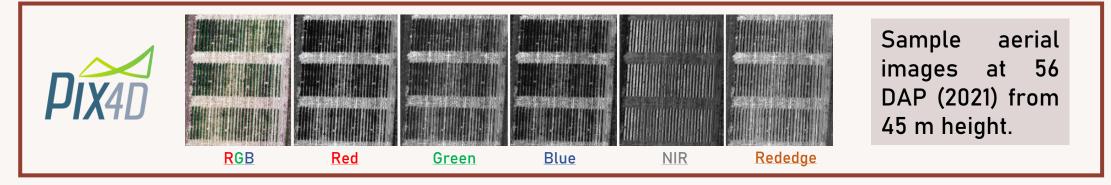
Nitrogen Treatments:


- 0 kg N ha⁻¹(0)
- 44 kg N ha⁻¹ (40)
- 89 kg N ha⁻¹ (80)
- 134 kg N ha⁻¹ (120)
- 179 kg N ha⁻¹ (160)

Design:

- RCBD
- 5 replications
- 6 row plots

Measurements



- Multispectral imagery using MicaSense RedeEdge-MX[™] Camera on DJI Inspire 2
- RGB imagery using DJI Phantom 4 Pro V2.0

- Light Interception using ceptometer
- In season aboveground biomass collection

Image Processing and Analysis

 <u>Image Processing</u>: Pix4D[®] software was used to obtain mosaic images combining imagery for each sample date.

 <u>Imagery Analysis:</u> Arc Map 10.7.1[®] was used to extract reflectance index for vegetation indices (VI's) computation.

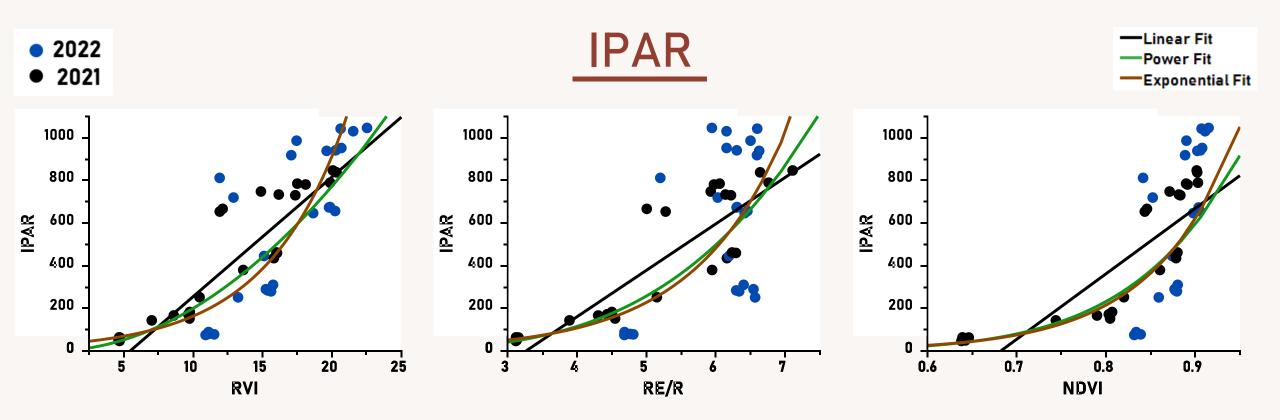
ArcGIS					
	RGB Aerial Image	<u>Classified Aerial</u> Image	<u>Binary Mask</u> Layer	<u>Red Band</u> without soil	Region of Interest

Vegetation Indices (20 total)

Abbreviated VI's	Nomenclature	Formula
ExG	Excessive Greenness	$2 \times G - R - B$
NDVI	Normalized Difference Vegetation Index	NIR - R
ExG*NDVI	ExG multiplied by NDVI (Classification Index)	$\overline{\text{NIR} + \text{R}}$ $(2 \times \text{G} - \text{R} - \text{B}) \left(\frac{\text{NIR} - \text{R}}{\text{NIR} + \text{R}}\right)$
GNDVI	Green Normalized Difference Vegetation Index	$\frac{\text{NIR} - \text{G}}{\text{I}}$
NDRE	Normalized Difference Red Edge Index	$\frac{\text{NIR} + \text{G}}{\frac{\text{NIR} - \text{RE}}{\frac{\text{NIR} + \text{RE}}{\frac{\text{NIR} + \text{RE}}{\frac{\text{NIR} + \text{RE}}{\frac{\text{NIR} + \text{RE}}{\frac{\text{NIR} + \frac{\text{RE}}{\frac{\text{NIR} + \frac{\text{RE}}{\frac{\text{RE}}}}}}}}$
RVI	Ratio Vegetation Index	$\frac{\text{NIR} + \text{RE}}{\frac{\text{NIR}}{\text{RE}}}$
SCCCI	Simplified Canopy Chlorophyll Content Index	R <u>NDRE</u>
RE/R	Red edge and Red Ratio	NDVI $\frac{RE}{R}$
GRVI	Green Ratio Vegetation Index	$\frac{\overline{R}}{NIR}$

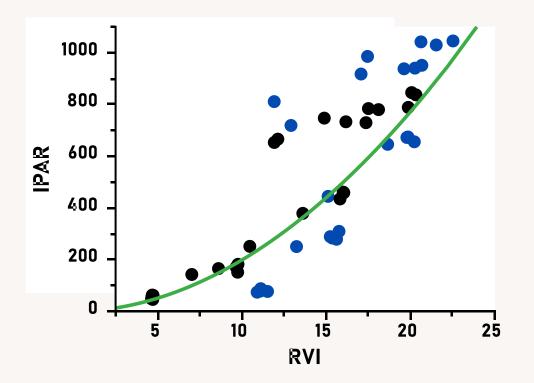
Statistical Analysis

Software:

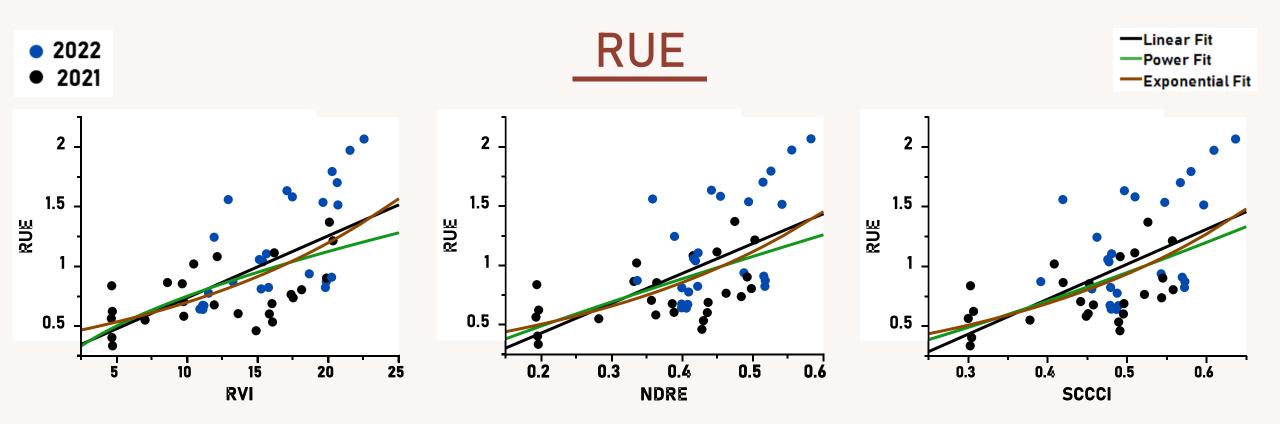

- Pix4D[®] for image processing
- ArcGIS 10.7.1[®] for geospatial analysis and computing vegetative indices
- JMP[®] Pro 16.0.0 for modelling and graphs

Data Analysis:

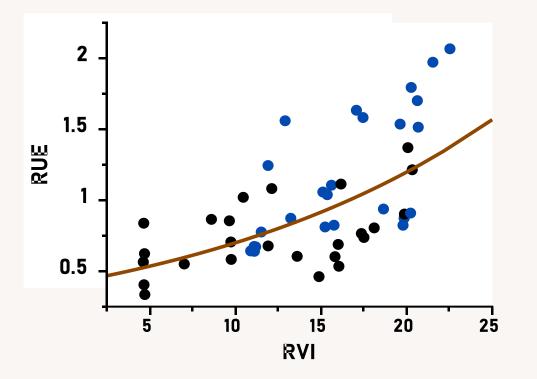
- Scatter plots and outlier analysis
- Regression Models:
 - Linear relationship (y = a + bx)
 - Power relationship (y = ax^b)
 - Exponential relationship (y = ae^{bx})
- Test model significance (alpha = 0.05)
- R² and RMSE values for comparing models

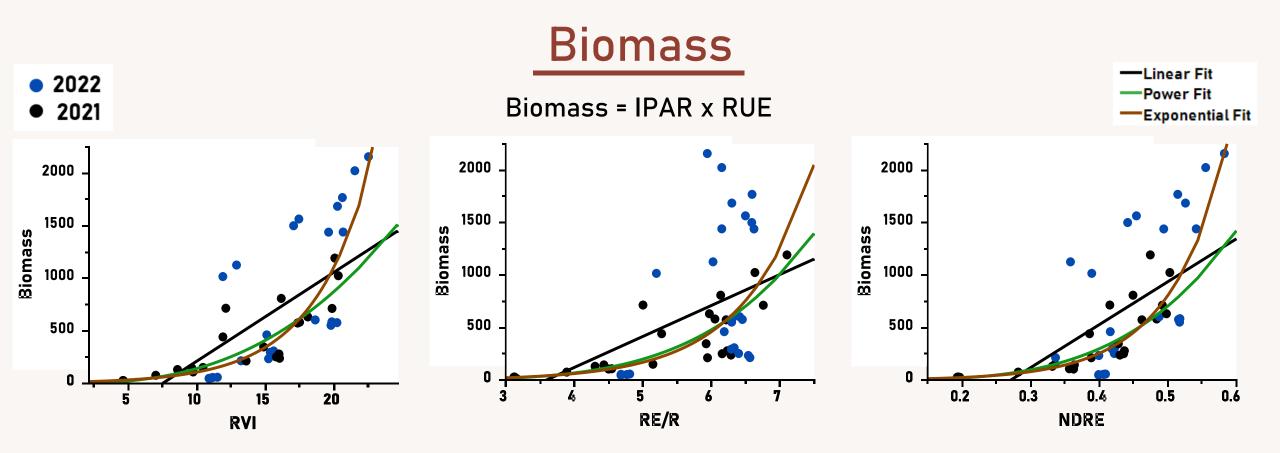


Results

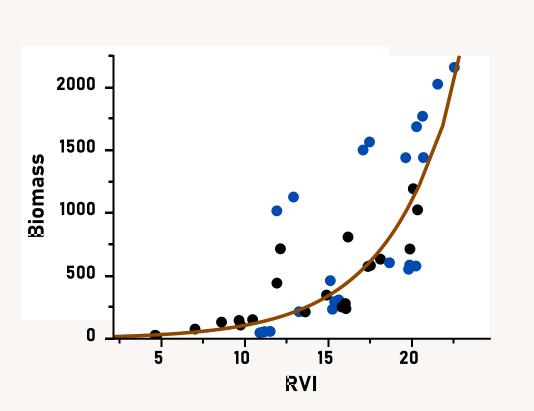

VI's -	Linear		Power		Exponential	
	R ²	RMSE	R ²	RMSE	R ²	RMSE
RVI	0.703	185.77	0.747	188.12	0.755	205.64
RE/R	0.526	234.66	0.713	245.10	0.715	252.43
NDVI	0.498	241.57	0.652	231.25	0.675	220.62

IPAR

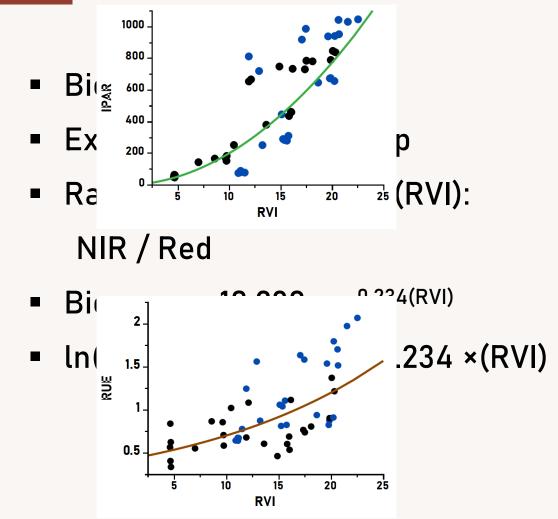

- Power relationship
- Ratio Vegetation Index (RVI):
 NIR / Red
- IPAR = 2.199 + (RVI)^{1.956}
- In(IPAR) = 0.788 + 1.956 × In(RVI)


VI's -	Linear		Power		Exponential	
	R ²	RMSE	R ²	RMSE	R ²	RMSE
RVI	0.394	0.328	0.387	0.343	0.426	0.325
NDRE	0.339	0.343	0.344	0.353	0.380	0.337
SCCCI	0.327	0.346	0.339	0.351	0.360	0.341

RUE



- Exponential relationship
- Ratio Vegetation Index (RVI):
 NIR / Red
- RUE = 0.409 × e^{0.054(RVI)}
- In(RUE) = -0.895 + 0.054 × (RVI)



	Linear		Power		Exponential	
VI's -	R ²	RMSE	R ²	RMSE	R ²	RMSE
RVI	0.538	407.6	0.751	409.8	0.770	354.6
RE/R	0.318	490.2	0.693	513.9	0.696	513.4
NDRE	0.453	438.9	0.655	440.6	0.684	390.3

Biomass

Conclusions

🖵 IPAR -

- > RVI, RE/R, and NDVI were strongly related (R^2 : 50 -75%) with IPAR.
- A power regression model for RVI explained the highest variation (75%) in IPAR.
- 🗆 RUE -
 - \succ RVI, NDRE, and SCCCI were moderately (R²: 32-43%) related with RUE.
 - An exponential model for RVI explained the highest variation (43%) in RUE.

Future Work:

 Validation of the prediction models using next year data and development of a model to predict harvest index (HI)

SCAN ME!! If you want to connect on LinkedIn

OR

Email: amritpokhrel@uga.edu

Thanks!

Acknowledgements

- Dr. Simerjeet Virk
- Dr. John L Snider
- Dr. George Vellidis
- Ved Parkash
- Coleman Byers

