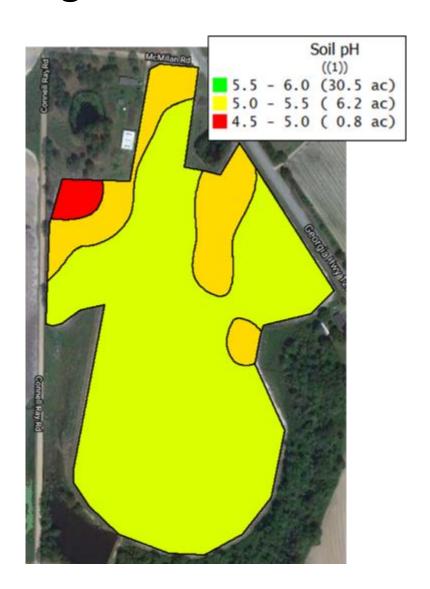
2023 Southern Peanut Growers Conference | July 28, 2023

Building on our Strengths in Precision Agriculture to Advance Peanut Production

Simer Virk

Assistant Professor &
Extension Precision Ag Specialist
University of Georgia

Precision Ag Applications in Peanut Production

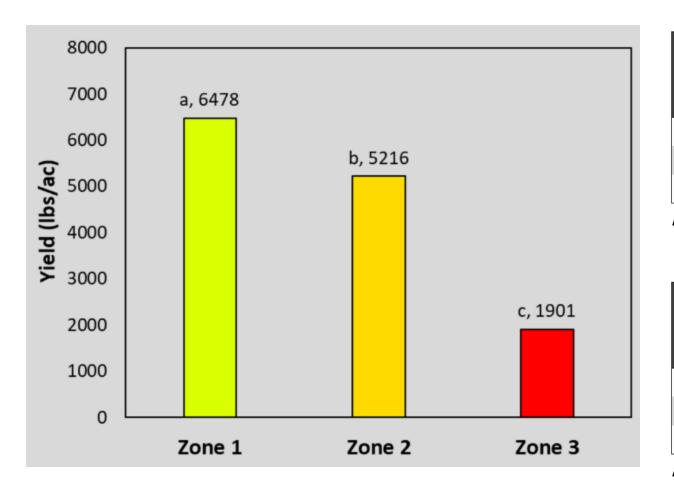


Uniform Vs Variable-Rate Liming

Soil Sampled using 2.5-ac grids

Soil pH: 5.50 – 6.00

Soil pH: 5.00 – 5.50


Soil pH < 5.00

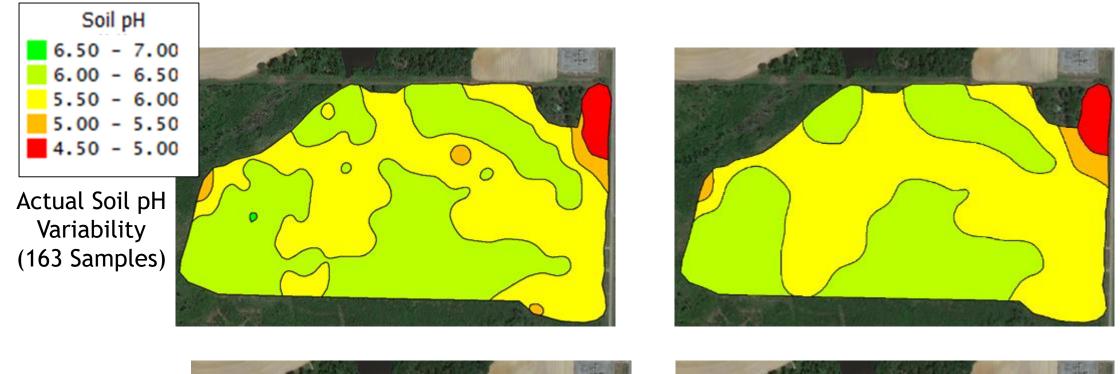
		Uniform Application					
Field	Size	Rate	Cost	Yield	Gross Rev.		
	(acres)	(tons/ac)	(\$/ac)	(lbs/ac)	(\$/ac)		
Zone 1	30.5	0.5	\$19	6,478	\$1,376		
Zone 2	6.2	0.5	\$19	5,216	\$1,108		
Zone 3	0.8	0.5	\$19	1,901	\$404		
Average/a	ас		\$19	6,171	\$1311		

		Variable-Rate Application					
Field	Size	Rate	Cost	Yield*	Gross Rev.		
	(acres)	(tons/ac)	(\$/ac)	(lbs/ac)	(\$/ac)		
Zone 1	30.5	0.5	\$19	6,478	\$1,376		
Zone 2	6.2	1.0	\$38	6,000	\$1,275		
Zone 3	0.8	1.5	\$57	4,000	\$850		
Average/a	ас		\$23	6,346	\$1348		

Precision soil sampling and variable-rate lime application can increase the revenue by \$27/ac in this field (On average, past studies show average cost return of \$14-\$20 from GPS soil sampling and \$VRT)

Precision Soil Sampling Strategies

Traditional Soil Sampling (1-2 composite sample)


Grid Soil Sampling (uniform sized grids)

Zone Soil Sampling (zones based on certain soil/crop properties)

Is there an optimal grid size for precision soil sampling & VR liming?

	Grid Size (ac)	#samples	Soil Sampling/ Labor Costs (\$)	Sample Analysis Costs (\$)	Total Cost (\$)
水污	1.0	92	460	552	1012
	2.5	35	414	210	624
	5.0	17	368	102	470
	7.5	13	368	78	446
	10.0	8	368	48	416

7.5 ac 10.0 ac

1 ac (92 samples)

5 ac (17 samples)

Grid Size – Application Accuracy vs Cost

Field 1

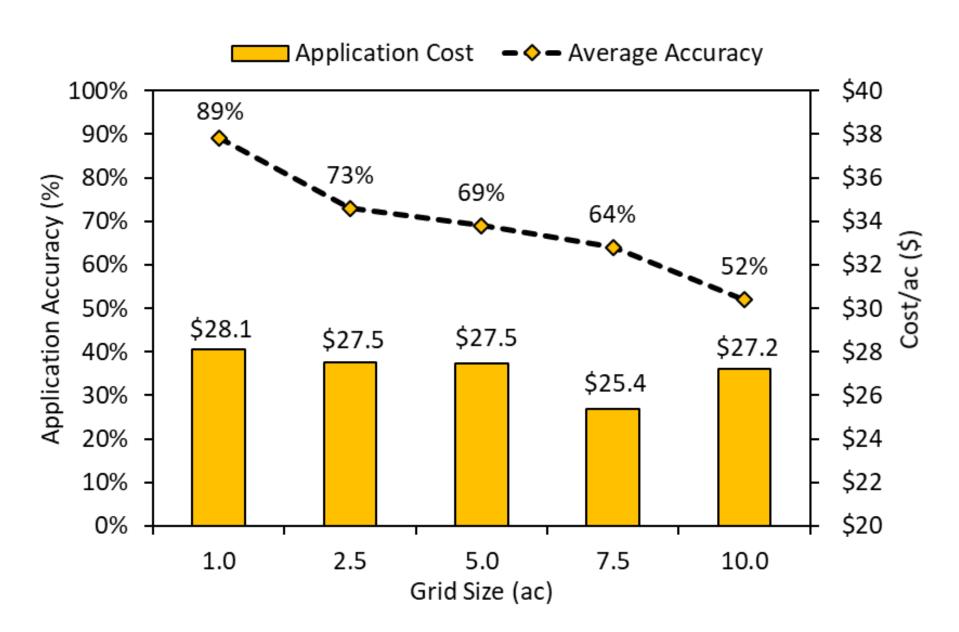
Grid **Accuracy** Cost (\$/ac) Size (%) 1.0 90 20 2.5 85 14 5.0 75 15 66 7.5 20

34

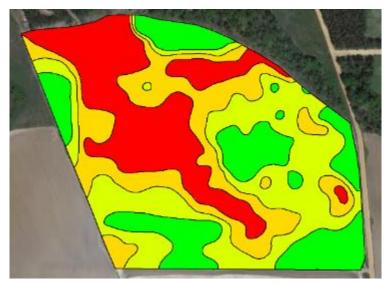
17

10.0

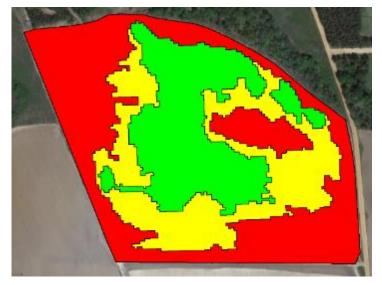
Field 2


Grid Size	Accuracy (%)	Cost (\$/ac)
1.0	87	43
2.5	66	35
5.0	51	31
7.5	46	33
10.0	45	41

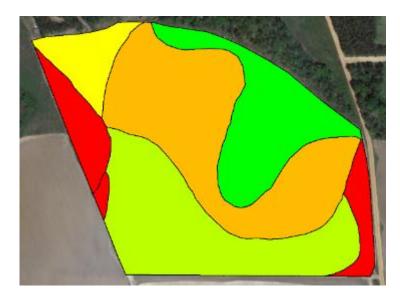
Field 3


Grid Size	Accuracy (%)	Cost (\$/ac)
1.0	95	34
2.5	93	30
5.0	87	32
7.5	62	30
10.0	30	39

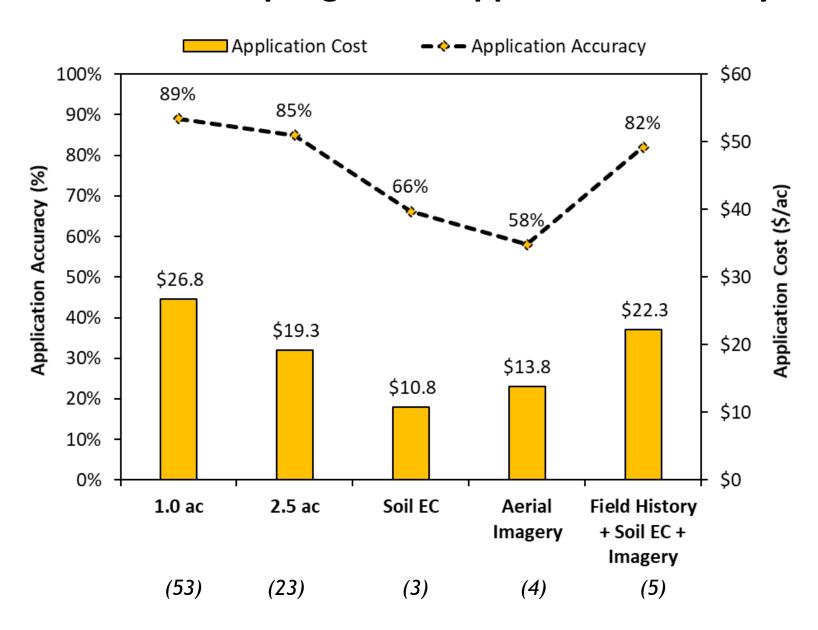
Application Cost = Soil sampling cost + soil analysis cost + cost of lime


Influence of Grid Size on Lime Application Accuracy and Cost

Zone Sampling



Soil EC/Texture (4 zones)



In-Season Crop Imagery/NDVI (3 zones)

Grower knowledge/field history + Soil EC + In-season Crop Imagery (5 zones)

Grid Size vs Zone Sampling - Lime Application Accuracy and Cost

Peanut Planting

- Peanut seeding rates are considerably higher than other crops (corn and cotton)
- Planting speed is normally slower (3.0 3.5 mph)
- Until recently, most of the planting technology advancements have been focused primarily towards other crops (primarily corn)

Planting Technology

Seed Monitor*

- Population (over or under)
- Seed Singulation (98 100%)
- Seed Spacing (<> target)
- Spacing Quality (95-100%)
- *by-row planting feedback

Peanut Seed Meters

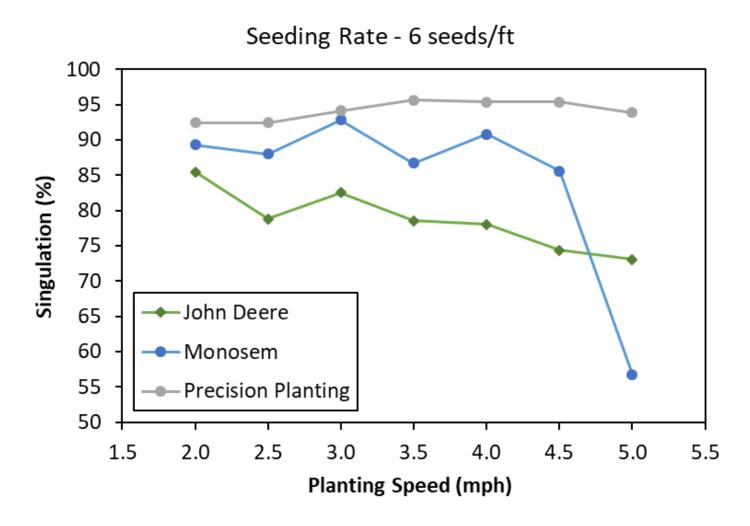
John Deere

- staggered 56-cell seed plate
- ground driven
- *vacuum* : 12-14

Monosem

- singulated 48-cell seed plate
- ground driven
- doubles eliminator
- *vacuum : 20-25*

Precision Planting


- singulated 32-cell seed plate
- electronically driven
- doubles eliminator & ejector
- vacuum : 20-30

Seed Singulation

Singulation (%) at different speeds (6 seeds/ft)

Planting Speed (mph)	John Deere	Monosem	Precision Planting
2.0	85%	89%	92%
2.5	79%	88%	92%
3.0	83%	93%	94%
3.5	79%	87%	96%
4.0	78%	91%	95%
4.5	74%	86%	95%
5.0	73%	57%	93%

John Deere

Planting Speed	Seeding Rate (seeds/ft)					
(mph)	3	4	5	6	7	8
2.0	90	88	88	85	87	82
2.5	90	86	84	79	78	85
3.0	90	88	84	83	77	77
3.5	86	85	81	79	77	78
4.0	85	82	78	78	73	71
4.5	91	82	78	74	71	69
5.0	84	80	75	73	71	62

Monosem

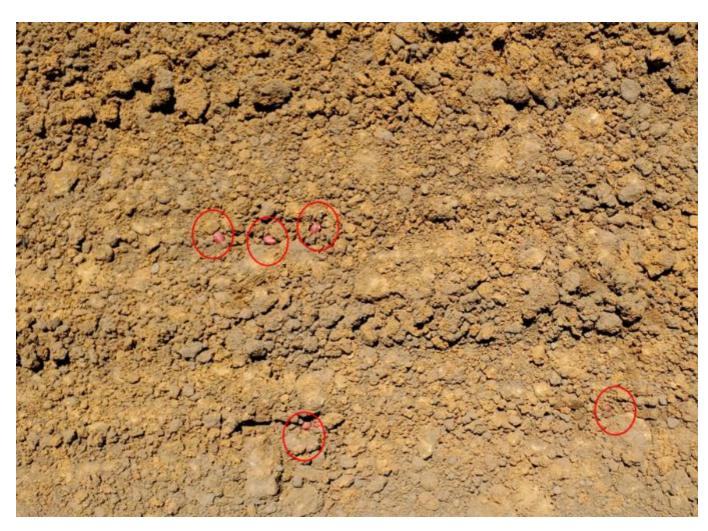
Planting Speed	Seeding Rate (seeds/ft)					
(mph)	3	4	5	6	7	8
2.0	91	90	89	89	88	92
2.5	90	92	91	88	92	87
3.0	91	89	90	93	84	86
3.5	94	91	92	87	68	67
4.0	89	91	92	91	81	53
4.5	89	92	88	86	53	44
5.0	90	89	85	57	38	34

Precision Planting

Planting Speed	Seeding Rate (seeds/ft)					
(mph)	3	4	5	6	7	8
2.0	94	90	91	92	96	94
2.5	90	91	90	92	95	93
3.0	92	91	92	94	94	97
3.5	91	92	94	96	96	95
4.0	92	92	94	95	96	91
4.5	93	92	94	95	95	96
5.0	93	95	95	94	93	-

Precision Seed Metering

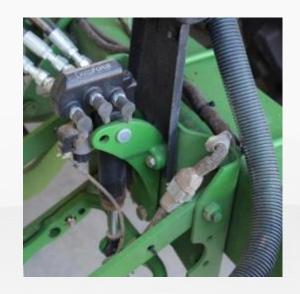
Mechanical Seed Meters

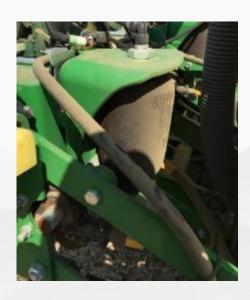

Electric Seed Meters/Drives

Planter Downforce Technology

For Peanuts:

- NOT ENOUGH results in shallower planting depths (reduced emergence)
- TOO MUCH does not impact emergence as long as planting depth is attained





Downforce Technology Options

Active Downforce Systems

Benefits:

- Enable automatic downforce adjustments as field conditions change
- Improves seed placement in varying field conditions

Planting Technology

Controlled Seed Delivery:

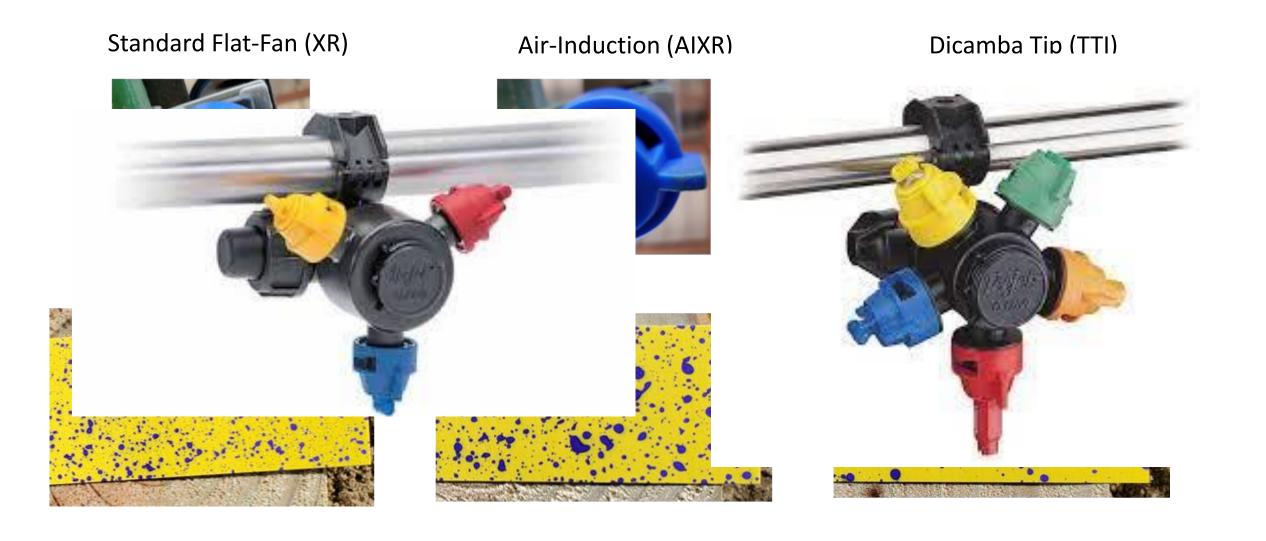
Provides controlled seed delivery to the furrow from the seed meter

SmartFirmer:

Provides real-time information on soil properties (moisture, temp and organic matter) during planting

SmartDepth:

Enables real-time seed depth adjustments based on a preset range, soil moisture, or OM


Spray Technology

Common Nozzles used for Peanut Pest Management

Pulse-Width Modulation (PWM) Technology

- Constant spray pressure across the boom
- Flow (rate) changes are accomplished by varying duty cycle

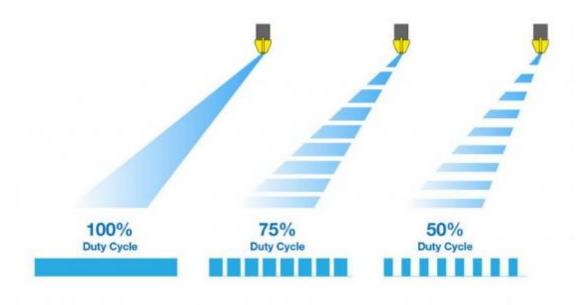
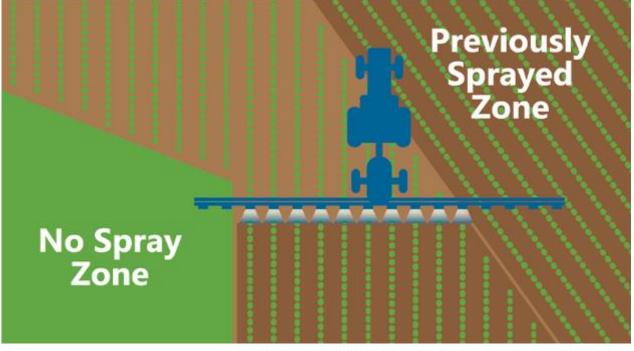



Image source: Dultmeier.com

Individual Nozzle Control

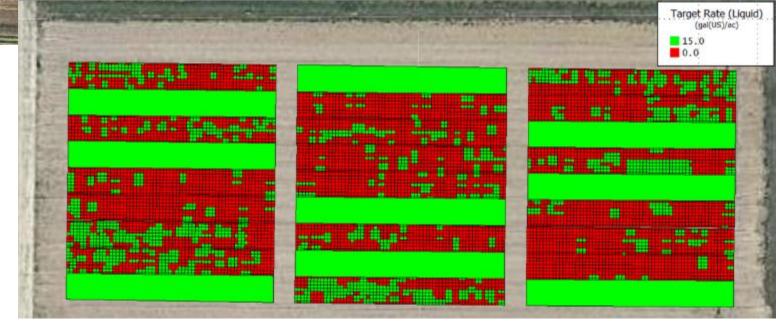
Individual nozzles can turn ON/OFF as they come out of spray and nonspray/already sprayed areas.

Site-Specific Pesticide Application Technology

See & Spray Select: Broadcast and targeted spray on fallow ground (green-on-brown)

See & Spray Ultimate: Targeted spray in the crop (corn, soybean and cotton; green-on-green)

Image source: John Deere


Site-Specific Weed Management in Peanut

Site-Specific Weed Management

Method	Area Sprayed (%)	Efficacy (%)
Broadcast	100	91.3
Site-Specific	28	91.6

Spray Drone Fungicide Applications

Thanks!

Simer Virk

Extension Precision Ag Specialist

University of Georgia

Email: svirk@uga.edu

Website: https://agtechdata.uga.edu/

Twitter: @PrecAgEngineer

